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Abstract

This report presents a Traffic Sign Recognition (TSR) System built with pre-trained Convolutional
Neural Network descriptors. The Network used in the project is similar to the one used by team
Supervision (Krizhevsky et al.) to win the in the ImageNet 2012 challenge with impressive results.
The project had three phases; annotation of video, generation of data set and implementation of the
system. In the annotation phase, video clips containing traffic signs were annotated using VATIC. The
annotations were used to generate 256x256 images containing the signs at different positions and scales
using matlab scripts. The data set consists of 10,000 samples for each signs and the training, validation
and test sets were divided such that it was stochastically independent. These images were passed through
the pretrained Convolutional Neural Network, and the first fully connected layers output was used to
learn a linear SVM classifier. Finally the system was implemented on the Motorola Moto x powered by
Qualcomm Snapdragon 801, running the android OS.

I. INTRODUCTION

Traffic Sign Recognition is a real-world computer vision problem of high practical relevance and has
been a research topic for several decades. There is no question about the importance of Traffic Sign
Recognition Systems in vehicles; this is evident as they has found their way into a few cars in Europe. It
will be quite a while before all cars get these systems as a standard feature. To bridge the gap between
now and then, smart phone application developers have tried to implement a TSR system on mobile
devices. Though there is some success in the space, there is a lot of room for improvement.

There are more than 120 types of signs belonging to 8 major categories used in the U.S. It is not within
the scope of this project to be able to build a system that can recognize all the signs. An article in the
‘Journal of Safety Research’ claims that "Stop sign violations accounted for about 70% of all crashes
in cities" [10], another book on road safety claims that human beings have very poor memory of seeing
pedestrian signs and game signs as compared to speed limit signs [12]. This shows that that not all signs



2

Fig. 1: Signs targeted to be recognized

needs to be weighed equally, hence for the project a set of eight signs (see Fig 1) were chosen depending
on their importance and also availability of videos.

The report is organized as follows: Section II provides an overview of the Convolutional Neural Net-
works used. Section III provides an overview of the annotations. Section IV explains how the data set
was generated. Section V discuses the classifier and its performance. The implementation specifics are
presented in section VI. The report is finally concluded in section VII with plans for future work in
section VIII.

II. CONVOLUTIONAL NEURAL NETWORKS

The impressive performance of the Deep Convolutional Neural Network in the ImageNet 2012, as
described by Krizhevsky et al. [8] attracted a lot of attention in the vision community. A study evaluating
the performance of the CNN’s descriptors on other datasets can be seen in ‘Neural Codes for Image
Retrieval’, Babenko et al [9].

A. Network Architecture

The network architecture (Fig 2) contains eight layers, five convolutional and three fully-connected layers.
A detailed explanation of the network can be found in [8].

B. DeepBeliefSDK

DeepBeliefSDK [1] is a pre-trained network library, that implements the Deep Convolutional Neural
Network as described by Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton [8], and trained on the
ImageNet 2012 dataset. It provides libraries for a variety of platforms including android and embedded
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Fig. 2: CNN architecture
(source: ‘ImageNet Classification with Deep Convolutional Neural Networks’, Krizhevsky et al. [8])

linux distributions running on arm. According to the implementation, the CNN uses ‘Rectified Linear
units’ (ReLU) with ‘local response Normalization’. All the convolutional layer and the first two fully
connected layers implement these neurons. DeepBeliefSDK allows the user to specify the layer and the
type of output (raw, ReLU or Local response Normalized) required.

III. ANNOTATION

The first phase of the project was to make up a collection of dashboard videos, and annotate them. The
sources from which the videos were collected, a brief description of the annotation tools available and
the annotation process is explained in this section.

A. Video

A youtube channel [2] containing a large collection of dashboard footage of drives through interstate
highways was most helpful for the project. A few of these videos containing the targeted signs were
selected to be annotated. The videos were selected such that the signs had visibly different backgrounds
and were in different lighting conditions. Additionally few videos were recorded with a phone mounted
on the dashboard. The videos from youtube were primarily used as the training set, while the videos
from the phone serves as the test set.

B. Annotation tools

There are a lot of annotation tools available, a few were considers for the project, but finally VATIC
was chosen and reasons are briefly explained in this section. LabelMeVideo [3], is an extension for
annotating videos in the popular image annotation tool LableMe [4]. The tool is still in the early stages
of development and a general opinion is that it is very buggy. A popular software for video annotation is
Anvil. The tool has a lot of options and settings especially for annotating videos of humans. The project
did not need all the functionally offered by the tools, and in fact it would have made annotations that
much more complex. Finally a tool that is slowly gaining popularity in the vision research community,
VATIC [5] was chosen. VATIC is a free, interactive Video Annotation Tool from Irvine, California. It can
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be used either in offline or online mode. In the online mode it can crowd-source work to AmazonâĂŹs
Mechanical Turk. Thought the tool is not what is considered production level it was good enough for
the project.

C. Annotation process

VATIC was installed on ubuntu and used in the offline mode for the project. The VATIC installation
guide [5] provided by the author is limited, as it does not document the installation procedure for the
supporting systems. A more comprehensive installation guide for ubuntu, documenting procedures for a
few of the supporting systems, can be found here [6]. A complete installation guide for ubuntu, taking
elements from both these documents, was compiled and is given in Appendix A.

The videos to be annotated were first split into frames using ffmpeg. These frames were then formates
into the desired folder structure required by VATIC and then loaded onto the server for annotation. All
the warning signs, not just the targeted signs were annotated in the videos. A few pointers that were
observed, and found to be useful, when annotating signs are given in Appendix B.

D. Results of Annotation

TABLE I: Annotated Signs Count - Targeted

S.No Sign 32-63 64-95 96-127 128-159 >=160 Total

1 Stop 428 181 65 49 19 742

2 Yield 513 129 35 7 0 684

3 Pedestrian 494 143 43 28 22 730

4 Game 358 110 34 5 0 507

5 Merge 566 195 76 16 5 858

6 Merge Added Lane 500 317 82 39 20 958

7 Curve 377 113 20 5 1 516

8 Signal Ahead 525 143 54 17 8 747

Total Targeted Signs 3761 1331 409 166 75 5742

% of Total Targeted Signs 65% 23% 7% 3% 1% 100%

TABLE II: Annotated Signs Count - Other

32-63 64-95 96-127 128-159 >=160 Total
Other Signs 2847 1321 256 64 38 4526

% of Other Signs 63% 29% 6% 1% 1% 100%

The final tally after annotating the videos are given in tables I,II. Each row of the Table I shows the
number of signs belonging to each targeted class. The column show the number of signs according to
the size; for example the third column in the table shows the number of signs in each class that had
signs of size 32x32 to 63x63 pixels. The last two rows show the total number of targeted signs in each
size category, and the percentage of targeted signs belonging to each size category respectively. Table II
show the total number of other signs in each size category, and the percentage of other signs belonging
to each size category.
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IV. DATA SET

In the "The German Traffic Sign Recognition Benchmark" challenge held at the International Joint
Conference on Neural Networks (IJCNN) 2011, teams achieved super-human performance on using CNN.
This gives confidence that CNN is the way to go to achieve good results, but one has to be cautious
since the competition was primarily geared toward classification, rather than detection,

The goal of the project is to implement a real world system capable of both detecting and classifying
signs, where as the competition was primarily geared toward classification, rather than detection, since
each image contains exactly one sign without much background.

The input image size of CNN is a 256x256 image. As seen in the table I the annotations are of a variety
of sizes, to be able to process the signs, images of sizes 256x256 were sampled of the signs by scaling
and cropping as necessary, even negative samples were generated by sampling the background.

A. Positive Samples

The frames were scaled and cropped such that the size of the sign was between 64x64pixels and 256x256
pixels. The signs were sampled while it was placed at the center and also placing them in a random
position inside the image. All the positive sampled images were put under the respective signs in the
‘Pos’ folder and all the negative samples were put in ‘Neg’ folder of the data set.

TABLE III: Initial Classification Performances

Min Sign Size - 32x32 Min Sign Size - 64x64
Size True Positive False Positives True Positive False Positives
32-63 41%

37%

-

3%
64-95 62% 50%

96-127 79% 76%

128-160 91% 87%

>=160 100% 100%

A subset (373 training and 74 testing) of the ‘yield’ signs were scaled to different sizes and cropped to
256x256 images, this made up the initial positive samples. The negative samples were sampled around
the annotations of the sign. This initial training set had about 8000 samples and the initial test set had
about 1000 samples. This set was passed to the CNN and the output of the penultimate layer was stored.
Two Neural network classifiers were learned on the penultimate layer of the CNN. One trained on the
entire training set and the other only on signs greater than 64x64 pixels, the results are shown in the
table III. It can be seen that though the True Positive rate of the network trained on the entire set is
greater than the other, its false positive (37%) is high . For this reason it was decided that the samples
generated would have a minimum size of 64x64 pixels.

B. Data Augmentation

The data was augmented by scaling and translations alone. The scaling and positioning strategies used
to sample the signs are described here. One sample was generated by cropping to the annotation and
then the sign was scaled so that it occupy almost the entire 256x256 image. Each frame was scaled to
0.5, 0.75, 1, 1.5, 2, 2.5, 3, 4, 5 depending on the size of each annotation. For example: if the annotated
size is 50x50 pixels the frame was scaled to 1.5, 2, 2.5, 3, 4 hence the sampled images have signs
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Fig. 3: An Example of all the samples generated from a single frame

of sizes 75x75, 100x100, 125x125, 150x150, and 200x200 respectively. After scaling the frames to all
possible scalings, a sample was generated by placing the sign at the center of the image. Samples are also
generated by positioning them randomly in the image. The number of such random samples generated
varies depending on the size of the sign; larger sign are sampled less and smaller sign are sampled more.
As the size of the sign increases the variation in position in the image decreases hence lesser number of
samples are required to represent them

TABLE IV: Augmented Data

S.No Sign Total

1 Stop 11089

2 Yield 11185

3 Pedestrian 11391

4 Game 8200

5 Merge 13479

6 Merge Added Lane 14502

7 Curve 8104

8 Light Ahead 11867

Total 95240

C. Negative Samples

A portion of negative samples were generated by sampling around a sign. When a sign is present in the
frame, samples are generated on all sides of the sign. Sampling successive annotated frame produced
similar samples which isn’t really necessary and may in fact prove counter productive. So only one frame
in every four frames is sampled. Additionally frames were also sampled at random positions to get a
diverse set of samples. To do this, only those frames are selected that don’t have any annotations in them,
and a 256x256 section was sampled at random.
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D. Compiling the Data Set

All images of one traffic sign was assigned to the same set, as otherwise the datasets could not be
considered stochastically independent. Splitting the data set was done by matlab script after the whole
dataset was passed to the cnn. This allowed for handcrafting the training data set by removing bad
samples that skew the validation performances.

V. TRAINING THE CLASSIFIER

Initially Artificial Neural Networks were trained to be the classifier. The idea was that it would maintain
the flow if future implementations would use hardware accelerated libraries for neural networks. But the
results of the ANN were slightly worse off than SVM so finally a linear-SVM classifier was trained for
the final implementation. While training the SVM 3000 samples belonging to the class and 3000 samples
from every other class were taken at random. The SVM was trained in the one vs rest model, the model
was also trained to give out the probability estimates so that the class with the highest probability was
chosen as the classification.

TABLE V: Confusion Matrix SVM

Predicted
Stop Yield Pedestrian Game Merge Merge Added Lane Curve Signal Ahead

Actual

Stop 92% 1% 0% 0% 0% 0% 0% 7%

Yield 4% 94% 0% 0% 1% 0% 0% 0%

Pedestrian 0% 0% 27% 6% 5% 10% 2% 50%

Game 0% 0% 0% 79% 14% 0% 7% 0%

Merge 0% 0% 10% 1% 79% 0% 6% 3%

Merge Added Lane 0% 0% 20% 4% 0% 17% 59% 1%

Curve 0% 0% 22% 0% 2% 0% 75% 1%

Signal Ahead 1% 1% 5% 0% 27% 0% 1% 65%

The performance of the classification is shown in table V confusion matrix. The Merge Added Lane
and the Pedestrian sign performed the worst among the group with only 17% and 27% true positives
respectively. The highest miss-classification was that of Merge Added Lane being classified as a curve
sign, and pedestrian signs being classified Signal Ahead.

VI. IMPLEMENTATION

The strategy followed for detecting the sign is to keep sampling in the area where the sign is most probable
to occur. To find the most probable location a heat map (fig 4) was created from the annotations. The
maximum temperature was found to be around (880,300) from the map. Input images of 256x256 were
sampled around this area. This image was fed into the CNN and its sixth layer (the first fully connected
layer) output array was passed to a svm_predict module. svm_predict loads the stored models of the
classifier and predicted the class.

The system was installed on Motorola Moto x powered by Qualcomm Snapdragon 801 and 2GB of
RAM. The phone runs on a Pure android 5.0 OS. The results are by observation and are not yet quantify.
The application was a bit unstable but it was able to detect at least 80% of the signs and was able to
classify the signs as well. The phone was only able to process 1.18 frame per second (71 frames in 60
S), this could be one of the reasons for not having a higher detection rate seen with the data set.
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Fig. 4: Heat Map

VII. CONCLUSION

"Finding the optimal architecture of a ConvNet for a given task remains mainly empirical" [11]. That
being said, implementing an Off-the-shelf Convolutional Neural Network descriptors to perform a task
it wasn’t specifically designed to do, and still performing a good enough job, saves a lot of time in
designing domain specific network and training it.

The project successfully implemented an off-the-shelf pre-trained Convolutional Neural Network for
recognizing traffic signs. The project successfully used the annotations from VATIC to generated input
images for the DeepBeliefSDK whose output was used by libsvm to train a classifier.

The project can be of value to those trying to implement other recognition tasks using pre-trained
Convolutional Neural Network. The project’s code can be considered a framework to seamlessly handled
the flow of data between the tools (VATIC, DeepBeliefSDK and libsvm). The matlab scripts used to
handle the annotations and extract the signs can be considered as a tool by itself.

The code can be found in https://github.com/titusjj/TSR

VIII. FUTURE WORK

The Jetson TK1 dev kit is a powerful embedded platform and is gaining popularity among roboticist
interested in vision. The default OS, L4T a flavor of embedded linux which runs on arm is not able to
support the DeepBeliefSDK at this time. A work around this would be to flash the board with jetdroid
(android for Jetson), as described here [7]. And then run the android apk on the board. The main draw
back of this approach would be that it would limits the access to the CUDA platform, which can be used
to accelerate the CNN.
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Signs mostly appear on the right edge of the road, and only very rarely does a sign appear on the left
but doesn’t have the same sign on the right. Taking this into account a better positioning strategy would
be, to detect the right edges of the road, and use this information to crop the frame.

The project treats the TSR as a discrete problem, but in reality it is a continuous problem and using the
temporal information may provide valuable information for improving the performance of the system.
Some promising research use Recurrent Neural Networks to deal with Temporal information, these
avenues can to be explored more for these types of problems.
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APPENDIX

A. VATIC installation guide

Install Apache 2 web server

sudo apt-get install apache2

Make sure it works by typing in "localhost" in the address bar of the browser. You should see the default
apache server homepage (or) a page saying "It works!".

Next install and activate mysql and the module that ties Apache 2 web server to MySQL database. During
the installation it will prompt for a root password, it is recommended to fill in a < password >

sudo apt-get install mysql-server libapache2-mod-auth-mysql
sudo mysql_install_db
sudo /usr/bin/mysql_secure_installation

sudo /etc/init.d/mysql restart
# If running the above command throws this error:
# ERROR 2002 (HY000): Can’t connect to local MySQL server through socket

’/var/run/mysqld/mysqld.sock’ (2)
# A system restart may be required.

Log into the mysql command window using the root as the username and the password provided during
installation.

sudo mysql -u root -p
Enter password:<password>

Using the mysql command window create a databases named "vatic" with the following command.

mysql> create database vatic;
mysql> exit;

Download and install python and supporting tools.

sudo apt-get install python-setuptools
sudo apt-get install build-essential
sudo apt-get install autoconf libtool pkg-config python-opengl python-imaging

python-pyrex python-pyside.qtopengl idle-python2.7 qt4-dev-tools
qt4-designer libqtgui4 libqtcore4 libqt4-xml libqt4-test libqt4-script
libqt4-network libqt4-dbus python-qt4 python-qt4-gl libgle3 python-dev

sudo apt-get install libapache2-mod-wsgi

sudo a2enmod mod-wsgi
# if the above command does not work, try the command given below.
# $ sudo a2enmod wsgi

sudo apt-get install python-mysqldb
sudo easy_install munkres
sudo apt-get install python-pip
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sudo pip2 install parsedatetime

Install libjpeg-dev and python imaging Library Pillow.

sudo apt-get install libjpeg-dev
pip install -I pillow

Create symbolic links in /usr/lib

# if on a 64 bit system:
sudo ln -s /usr/lib/x86_64-linux-gnu/libjpeg.so /usr/lib
sudo ln -s /usr/lib/x86_64-linux-gnu/libfreetype.so /usr/lib
sudo ln -s /usr/lib/x86_64-linux-gnu/libz.so /usr/lib

# if on a 32 bit system:
sudo ln -s /usr/lib/i386-linux-gnu/libjpeg.so /usr/lib/
sudo ln -s /usr/lib/i386-linux-gnu/libfreetype.so.6 /usr/lib/
sudo ln -s /usr/lib/i386-linux-gnu/libz.so /usr/lib/

Re-install pillow

pip install -I pillow

Download FFmpeg, extract the tar ball and from the extracted directory run these commands.

sudo apt-get install -y yasm frei0r-plugins-dev gnutls-bin libgnutls-dev
libass-dev libgsm1-dev libmp3lame-dev libopencv-dev libopenjpeg-dev
libopus-dev libpulse-dev libschroedinger-dev libsoxr-dev libspeex-dev
libtheora-dev libv4l-dev libvorbis-dev libvpx-dev libx264-dev
libxvidcore-dev libopenal-dev libcdio-paranoia-dev

./configure --prefix=/usr --bindir=/usr/bin --datadir=/usr/share/ffmpeg
--incdir=/usr/include/ffmpeg --libdir=/usr/lib/x86_64-linux-gnu/
--mandir=/usr/share/man --arch=x86_64 --optflags=’-O2 -g -pipe -Wall
-Wp,-D_FORTIFY_SOURCE=2 -fexceptions -fstack-protector-strong
--param=ssp-buffer-size=4 -grecord-gcc-switches -m64 -mtune=generic’
--enable-bzlib --disable-crystalhd --enable-frei0r --enable-gnutls
--enable-libass --enable-libcdio --enable-libdc1394 --disable-indev=jack
--enable-libfreetype --enable-libgsm --enable-libmp3lame --enable-openal
--enable-libopencv --enable-libopenjpeg --enable-libopus
--enable-libpulse --enable-libschroedinger --enable-libsoxr
--enable-libspeex --enable-libtheora --enable-libvorbis --enable-libv4l2
--enable-libvpx --enable-libx264 --enable-libxvid --enable-x11grab
--enable-avfilter --enable-avresample --enable-postproc --enable-pthreads
--disable-static --enable-shared --enable-gpl --disable-debug
--disable-stripping --shlibdir=/usr/lib/x86_64-linux-gnu/
--enable-runtime-cpudetect

make
sudo make install
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Now download and install VATIC.

wget http://mit.edu/vondrick/vatic/vatic-install.sh
chmod +x vatic-install.sh
./vatic-install.sh

After installing VATIC, edit the apache configuration to give permission to the folder containing VATIC.
The file can be accessed by the following command

sudo gedit /etc/apache2/apache2.conf

Add the following to the permissions section in the file, to grant access to the folder ‘vatic’.

<Directory /path/to/vatic/>
AllowOverride None
Require all granted

</Directory>

Now follow the instructions given in the README file of VATIC to complete the installation.
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B. Tips for using VATIC for sign annotations

Set the –blow-radius to 0 when loading a video, this essentially allows one to annotate each frame. In the
default mode annotating one frame would erase all the annotation present within 5 frames of the latest
annotation, this is a hazel when consecutive frames have to be annotated.

VATIC's interpolation algorithm is linear and was primarily designed for surveillance camera where the
objects are almost always in the same distance relative to the camera. But here the change in the size
and position of the signs is large when the signs are closer. To tackle this problem, it is recommended
that annotation be done on the frame where the sign is just outside the bounding box of the previous
annotation; this ensures that the interpolated signs fit in the bounding boxes correctly.

It is recommended that the video be decomposed into highest quality images, to clearly distinguish the
signs that are far. This can be done by replacing the following commands:

$ turkic extract /path/to/video.mp4 /path/to/output/directory

with

$ ffmpeg -i /path/to/video.mp4 -qscale:v 1 /tmp/all/frames/%d.jpg
$ turkic formatframes /tmp/all/frames /path/to/output/directory
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